skip to main content


Search for: All records

Creators/Authors contains: "Alvarez, Pedro J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Fusobacterium varium has been generally overlooked in cattle rumen microbiome studies relative to the presumably more abundant liver abscess-causing Fusobacterium necrophorum. However, F. varium was found to be more abundant in the rumen fluid of cattle and under culture conditions tailored to enrich F. necrophorum. Using near-full length 16S ribosomal ribonucleic acid sequencing, we demonstrate that F. varium grows under restrictive conditions commonly used to enumerate F. necrophorum, suggesting that previous F. necrophorum abundance assessment may have been inaccurate and that F. varium may be an underestimated member of the ruminal bacterial community. Fusobacterium varium were not as susceptible as F. necrophorum to in-feed antibiotics conventionally used in feedlots. Exposure to tylosin, the current gold standard for liver abscess reduction strategies in cattle, consistently hindered growth of the F. necrophorum strains tested by over 67% (P < 0.05) relative to the unexposed control. In contrast, F. varium strains were totally or highly resistant (0%–13% reduction in maximum yield, P < 0.05). Monensin, an ionophore antibiotic, had greater inhibitory activity against F. necrophorum than F. varium. Finally, preliminary genomic analysis of two F. varium isolates from the rumen revealed the presence of virulence genes related to those of pathogenic human F. varium isolates associated with active invasion of mammalian cells. The data presented here encourage further investigation into the ecological role of F. varium within the bovine rumen and potential role in liver abscess development, and proactive interventions.

     
    more » « less
  2. Abstract Formation of mineral scale on a material surface has profound impact on a wide range of natural processes as well as industrial applications. However, how specific material surface characteristics affect the mineral-surface interactions and subsequent mineral scale formation is not well understood. Here we report the superior resistance of hexagonal boron nitride ( h BN) to mineral scale formation compared to not only common metal and polymer surfaces but also the highly scaling-resistant graphene, making h BN possibly the most scaling resistant material reported to date. Experimental and simulation results reveal that this ultrahigh scaling-resistance is attributed to the combination of h BN’s atomically-smooth surface, in-plane atomic energy corrugation due to the polar boron-nitrogen bond, and the close match between its interatomic spacing and the size of water molecules. The latter two properties lead to strong polar interactions with water and hence the formation of a dense hydration layer, which strongly hinders the approach of mineral ions and crystals, decreasing both surface heterogeneous nucleation and crystal attachment. 
    more » « less
  3. Water and wastewater infrastructure worldwide faces unprecedented demand and supply conflicts that require unconventional solutions. In this study, we develop a novel modelling framework to assess the environmental and economic implications of a hybrid water supply system that supplements a centralized surface water supply with distributed direct potable reuse (DPR) of municipal wastewater, as a strategy to address such challenges. The model is tested with real water and wastewater systems data from the City of Houston, Texas. Results show that supplementing the conventional centralized water supply with distributed DPR would reduce water age in the drinking-water distribution network and hence improve water quality; properly designed system configurations attain system-wide net energy savings even with the high energy consumption of existing technologies used for advanced treatment of the wastewater. A target energy efficiency for future advanced treatment technologies is identified to achieve net energy saving with all hybrid system configurations. Furthermore, distributed DPR remains financially competitive compared with other unconventional water supply solutions. The modelling framework and associated databases developed in this study serve an important research need for quantitatively characterizing distributed and hybrid water systems, laying the necessary foundation for rational design of integrated urban water systems. 
    more » « less
  4. Abstract

    There is a need for rapid, sensitive, specific, and low‐cost virus sensors. Recent work has demonstrated that organic electrochemical transistors (OECTs) can detect the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) spike protein. Here, a simple and low‐cost approach to the fabrication of OECT devices with excellent stability and unprecedented sensitivity and specificity for the detection of SARS‐CoV‐2 virus is demonstrated. The devices rely on the engineered protein minibinder LCB1, which binds strongly to SARS‐CoV‐2. The resulting devices exhibit excellent sensitivity for the detection of SARS‐CoV‐2 virus and SARS‐CoV‐2 spike protein receptor binding domain (RBD). These results demonstrate a simple, effective, and low‐cost biomolecular sensor applicable to the real‐time detection of SARS‐CoV‐2 virus and a general strategy for OECT device design that can be applied for the detection of other pathogenic viruses.

     
    more » « less